skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yastrzhembskiy, Timur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present global Schauder type estimates in all variables and unique solvability results in kinetic Hölder spaces for kinetic Kolmogorov-Fokker-Planck (KFP) equations. The leading coefficients are Hölder continuous in thex,vvariables and are merely measurable in the temporal variable. Our proof is inspired by Campanato’s approach to Schauder estimates and does not rely on the estimates of the fundamental solution of the KFP operator. 
    more » « less
    Free, publicly-accessible full text available March 12, 2026
  2. We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions. 
    more » « less